
www.manaraa.com

A Knowledge�Based Software Process Library

for Process�Driven Software Development

Peiwei Miy� Ming�June Leey and Walt Scacchiz

Computer Science Dept�y and Information and Operations Management Dept�z

University of Southern California�

Los Angeles� CA ��������	�

fscacchig
gilligan�usc�edu

Tel �	�� �������	

Fax �	�� ��������

Abstract

Process�driven software development represents a new technique for software pro�

duction� in which a conceptual knowledge representation� called a software process� is

used to represent and guide development activities� Management and reuse of software

processes therefore becomes a requirement for process�driven software development� In

this paper� we present a knowledge�based process library �SPLib� that supports the or�

ganization� access and reuse of software processes� SPLib consists of a knowledge base

of software process representations� It also provides a set of process operations that sup�

port browsing� searching composition and abstraction� These operations reason about

the content of software processes as well as maintain proper interdependency relation�

ships among the software processes� To demonstrate the use of SPLib in process�driven

software development� we provide a usage scenario where SPLib facilitates the access

and reuse of software processes in real applications�

�Acknowledgements� This work has been supported in part by contracts and grants from AT�T Bell

Laboratories� Hewlett�Packard� and Northrop B�	 Division� No endorsement implied�

www.manaraa.com

Contents

� Introduction �

� Related Work �

� A Usage Scenario� A Customized Software Process �

� Requirements for SPLib �

� The SPLib Process Representation �

��� A Two�Level Process Representation of SPLib � � � � � � � � � � � � � � � � � �

��� The SPLib Library Model �

��� The SPLib Process Model � 	

� SPLib Process Operations ��

��� A Process Search�and�Query Operation ��

��� A Process Composition Operation �

��� A Process Abstraction Operation ��

� The Usage Scenario Revisited ��

	 Conclusion �

i

www.manaraa.com

� Introduction

Process�driven software development represents a new technique for software production in

which a conceptual knowledge representation� called a software process� is used to represent

and guide development activities �MS	�� Ost��� During process�driven software develop�

ment� process engineers �rst specify a software process that is tailored for project goals and

other resource constraints� and then enact the process as a guide for developers� Software

developers generally follow the process for the roles they play as to what development ac�

tivities to perform and when to perform them� A process�driven CASE environment is also

required to integrate process representation� data management� and tool invocation� Re�

cent progress in software process modeling and process integration has made process�driven

software development a very promising� yet realistic engineering technique for the software

engineering community �Boe�� HK	� Kai� MS	�� MS	���

When knowledge�based process representations are utilized� management and reuse of the

classes and instances of the representations becomes a necessity� To this end� a knowledge�

based process library provides a solution the problem of process management and reuse�

A knowledge�based process library is able to maintain a large collection of software pro�

cess descriptions and interdependencies among them� just like the use of knowledge�based

component libraries to software reuse� Based on a software process description� the process

library can support query and retrieval to make access of software process easier and more

convenient� More important and unique to process reuse� the process representation forms a

foundation for advanced operations that generate new software processes out of existing ones�

In sum� such a knowledge�based process library enhances the accessibility and reusability of

existing process knowledge�

In this paper� we present a knowledge�based approach to organize� access and reuse soft�

ware processes� We describe the initial design and prototype implementation for a knowledge�

based software process library called SPLib� SPLib supports an extended version of the Ar�

ticulator meta�model of software processes �MS	�� and provides knowledge�based operations

to access and reuse of software processes� As such� we �rst discuss two types of related

work that lead to the SPLib� one that relates a knowledge�based approach to our study

of software process reuse� the other that describes how software process modeling provides

formalisms to describe and reason about software processes� Next� we provide a scenario

for the process library in process�driven software development� Based on this scenario� we

�

www.manaraa.com

identify and specify requirements for SPLib� Then� we describe the initial implementation of

SPLib which consists of a process representation and process operations respectively� After

this� we revisit the usage scenario to see how SPLib could be used� Finally� we conclude with

a brief discussion of our ongoing work and future plans�

� Related Work

Reuse of software components is an area where the ideas for component libraries and knowledge�

based techniques are being investigated� One approach to software reuse is to construct and

use source code libraries for software� For example� a standard software distribution pack�

age� such as X�windows� normally includes a large number of reusable functions and a library

directory� This kind of function library consists of a list of the functions� textual description

of their functionality� and a calling convention to invoke them� In this case� locating and

determining which functions to use relies upon directory information and keyword�string

search which is often cumbersome and problematic�

Subsequently� knowledge�based techniques are being investigated for more sophisticated

support mechanisms� Bauhaus �AL	� is a knowledge�based software parts composition sys�

tem shell� It has a knowledge base of reusable software component description� a catalog

for browsing and editing the knowledge base� a composition editor for component speci��

cation� and a code generator for composed or tailored components� LaSSIE �DBe	�� is a

knowledge�based software information system� It has a frame�based knowledge representa�

tion for software objects and relations� and it provides functions to query and browse software

objects� Software Components Catalogue �WS� is another knowledge�based system for

software reuse� It is an integrated component classi�cation and retrieval system� It utilizes

a conceptual dependency database describing software components and their relations� then

matches users requests for software components with descriptions of components which sat�

isfy these requests� Finally� it provides a natural language interface to specify user requests�

In sum� the core of these knowledge�based software reuse systems includes a knowledge rep�

resentation of software components� and a reasoning mechanism to search and match user

requests for software components� The advantages of using a knowledge�base approach in�

clude� aggregation of information about individual components� semantic retrieval� use of

classi�cation and inheritance to support updates� and use of a knowledge base as an index�

�

www.manaraa.com

The success of the knowledge�based approach to software reuse naturally leads to its

use in software process reuse� However� reuse of software processes is di�erent from reuse

of software source code components� Software processes are typically more complex and

related to more classes of development entities� such as developers in di�erent engineering

roles� multiple tools� multiple tasks� schedules� organizational policies and procedures� etc�

Software processes are therefore require a rich and formal knowledge representation�

Modeling of software processes is a new research area that has emerged in recent years�

Software process modeling originally started with informal and narrative descriptions� such

as natural language� which is aimed at recording experiential knowledge about development

processes� Frailey and Bate �FBe	�� describe Texas Instruments� e�ort to de�ne a corporate�

wide software process for the last three years� which is documented by English following DOD

or IEEE documentation standards� Ramesh and Dhar �RD	�� describe an e�ort to record

process knowledge through a semi�formal representation� The weakness of an informal or

semi�formal representation lies in its inability to reason about process details� be symboli�

cally executed� or downloaded into process�driven software engineering environments �MS	���

Therefore� informal process descriptions are limited to serve primarily as recording media�

which often fall out of date�

Alternatively� knowledge representations of software processes have been introduced� For

example� Grapple �HL� uses a set of goal operators and a planning mechanism to represent

software processes� These are used to demonstrated goal�directed reasoning about software

processes� Marvel �Kai� uses inference rules to model software processes� The condition

part of a process rule identi�es preconditions for a process to start and the action part of a

process rule then describes the e�ect of the process and its outcome� The Articulator �MS	��

describes software processes in terms of object classes and relations� such as task decompo�

sition hierarchies� The de�ned process classes and relations form formal models of software

processes� organizations� and resources� which are used to store process knowledge and sim�

ulate process enactment� The results of these e�orts provide formalisms that describe basic

characteristics of software process components� which in turn can be used to specify a formal

representation of process components�

Subsequently� reuse of software processes requires not only knowledge�based retrieval�

but also more advanced operations that can compose and tailor software processes to meet

user requests� We now turn to discuss a scenario for using a process library where these

�

www.manaraa.com

operations are needed�

� A Usage Scenario� A Customized Software Process

To illustrate the use of SPLib in process�driven software development� we provide a usage

scenario based on our experiences in modeling large�scale software processes for our industrial

sponsors�

A major aerospace contractor is awarded a contract to build an aircraft and its �ight

control software� Before starting the software development� the contractor decides to specify

a formal process model which describes development of the �ight control software�

Development of the �ight control system is constrained by several factors� First� it has

to follow several national standards as indicated by the original contract�awarding agency�

Second� the company has its own policies and procedures for how to do certain types of de�

velopment� Third� the development has to address technological challenges that are unique

to this �ight control software� For the �rst two types of constraints� formal process descrip�

tions at either the national level or the organizational level can be created that characterize

the required development processes� Unfortunately� no pre�existing process models can meet

the unique features� The task� therefore� is to construct a process model with following

characteristics�

� it describes the production of the �ight control software�

� it complies with the necessary national and organizational development standards�

� it speci�es innovative approaches to implement the unique features�

SPLib should help the construction of the process model as follows� First� SPLib can rep�

resent and store development standards� methodologies� and the contractor�s organizational

policies in form of process descriptions� Second� knowledge�based search functions can be

used to retrieve needed process description upon user requests� Third and more important�

knowledge�based operations can be used to compose and tailor the involved processes to

construct a desired process model�

This usage scenario suggests the ways SPLib enhances the organization� accessibility

and reusability of software processes� This can lead to high quality software processes for

process�driven software development� Later� we will revisit the scenario to investigate how

www.manaraa.com

SPLib supports its construction tasks in terms of software processes and process operations�

As such� we now use the scenario to identify requirements that the SPLib should satisfy�

� Requirements for SPLib

As seen in the previous section� a knowledge�based process library should enhance the acces�

sibility and reusability of software processes� Such knowledge is otherwise di�cult to collect

and organize for easy access and reuse� Based our analysis� the requirements for SPLib must

specify access and reuse requirements�

SPLib should provide readily available software processes to a broad community of users

while protecting proprietary information� SPLib should manage and store prescriptive devel�

opment plans and descriptive development histories� Physically� SPLib could be distributed

across a wide�area network that may span multiple organizational units and industrial �rms�

yet be accessible to speci�c projects or individuals where appropriate� To access software

processes� SPLib should provide access operations such as upload� download� retrieval� and

query�

SPLib should also facilitate construction of formally represented software processes� from

either informal process descriptions or tailorable formal process descriptions� It should sup�

port a single formal process representation� All software processes in SPLib will be either

described in or translated into the single process representation� Such a process representa�

tion should at the same time form an object�oriented hierarchy of software processes with

multiple levels of details� For the moment� three levels of details are de�ned� national�

organizational and project� More levels can be added when necessary� To reuse software

processes� SPLib should provide operations� such as specialization� composition� abstrac�

tion� and tailoring�

Overall� SPLib can be structured as an object�oriented hierarchical collection of di�erent

types of formal process descriptions with a set of process operations to facilitate the use of

software processes� While the access requirements provide similar capabilities to those re�

quired for software source code reuse� the reuse requirements for SPLib must facilitate more

advanced forms of reuse� such as abstraction and composition� However� support for accessi�

bility and reusability can be implemented separately� In other words� the access requirements

can be implemented �rst� while the reuse requirements implemented later� Accordingly� we

�

www.manaraa.com

now turn to discuss the SPLib process representation and operations respectively�

� The SPLib Process Representation

The SPLib software process representation is an extended version of the Articulator meta�

model we previously developed �MS	��� It consists of two parts� the library model is the

extended part that describes interactions and interdependencies of software processes� the

process model is the original Articulator meta�model that describes software processes them�

selves� These two parts represent two levels of descriptions� One represents interdepen�

dencies among software processes� the other represents the contents of software processes�

SPLib has been prototyped using the Articulator process modeling environment �MS	�� and

Knowledge�Craft �Car��� which speci�es objects and relations as schemata with attributes�

In this section� we �rst present the reasons to have these two parts separate� Then we discuss

the SPLib process representation� i�e� the library and the process model in detail� Process

operations that manipulate both models appear in the next section�

��� A Two�Level Process Representation of SPLib

As we said before� the SPLib process representation has two parts� the library model de�

scribes interactions and interdependencies of software processes and the process model de�

scribes a formalism of software processes� Such a structure is determined by issues of software

process modeling and accessing�

On the one hand� SPLib is a library of software processes� Users of SPLib are interested in

knowing about and accessing di�erent classes and levels of software processes through their

relationships� This requires that software processes be queried� accessed and referenced as a

whole without necessarily specifying their contents� To this end� the library model describes

classes and instances of software processes� and their interdependencies to support this kind

of usage�

On the other hand� searching and reasoning about software processes are not limited

to the class level� Sometimes� search for processes and related resources is based on the

content of software processes� such as their input and output resources� To this end� the

process model provides a language specifying the attributes� values� and methods of soft�

ware processes� The process model is also an abstract� �ne�grained� and editable view of

�

www.manaraa.com

the underlying software processes� which operations� such as search and composition� can

manipulate�

As a result� process operations navigate between the library model and the process model

to maximize their functionality� For instance� when a search request is speci�ed� it can be

implemented as a combination of library search to identify candidate software processes� and

model search to infer properties of the candidate software processes� We will later illustrate

the power of this two�level process representation in terms of process operations�

��� The SPLib Library Model

The SPLib library model describes classes of software processes and their relationships in

terms of access and usage� It is di�erent from the SPLib process model in that it deals

only with software processes as classes and instances� while the process model identi�es

objects and relations that constitute a software process� In the SPLib library model� SPLib

consists of an object�oriented hierarchy of interrelated process descriptions� There are classes

of di�erent software process descriptions at di�erent levels that are linked through relations

�Figure ��� In the �gure� circles represent software process descriptions and lines are relations

between software processes�

There are di�erent classes of software processes in SPLib�

� A process model is a class of software development processes� It represents a type of

software development approach or methodology� which can be instantiated for devel�

opment� or specialized for di�erent situations�

� A planned instance is a particular development plan created before software devel�

opment� It represents a particular binding of actual agents� tools� and resources to

the project plan� and serves as a developer role�speci�c guide during process�driven

software development�

� A history instance is a particular process record that describes the trajectory of process�

driven software development� It represents historical events that led to the completion

or failure of the development activities and serves as a record of the process� enactment�

Figure � lists its schematic de�nition for classes of software processes� Attributes in the

processes are either value attributes or relation attributes� which will be explained next�

�

www.manaraa.com

O1

O2

O3

O3

O2

O1

O1

O2

O3

O3

O2

O1

O1

O2

O3

R3

R1

Software-System

Toolkit

ProgramTool

Task

Action

Team

People

Section

Paragraph

Module

Function

Process

Agent

Dcoument

R0

R0

R0

O4

O3

R2

R1

O2

O1

Figure �� SPLib Architecture

Processes in SPLib are stored at di�erent levels� These levels of processes indicate level

of details and form a hierarchy that identi�es access to process descriptions� At present�

three levels are supported� but other customized levels can be added� The national level is

the highest of representation in SPLib where processes are available to an open community

of users� It is a broad and generic level of process description� The organizational level is for

di�erent organizations� It contains organization�speci�c information� The project level is for

a particular project within an organization�

Relations among processes in SPLib describe conceptual causal relationships between

processes and are de�ned as a pair of invertible relations from opposite directions�

� has�detailed�process � has�abstracted�process describes a relationship of specialization

and generalization� A pair of processes related through the relations is said that one

process is a specialization �generalization� of the other�

www.manaraa.com

�� SOFTWARE�PROCESS

IS�A� SOFTWARE�OBJECT

IS�A�INV� PROCESS�INSTANCE PROCESS�MODEL

LEVEL�

PROCESS�CONTENT� �pointer�to�process�description���

�� PROCESS�MODEL �� PROCESS�INSTANCE

IS�A� SOFTWARE�PROCESS IS�A� SOFTWARE�PROCESS��

HAS�DERIVATION�

DERIVATION�OF�

HAS�INSTANTIATION�

HAS�HISTORY�

HAS�DETAILED�PROCESS�

HAS�ABSTRACTED�PROCESS���

�� PLANNED�INSTANCE �� HISTORY�INSTANCE

IS�A� PROCESS�INSTANCE IS�A� PROCESS�INSTANCE

INSTANTIATION�OF� HISTORY�OF�

HAS�HISTORY��� HAS�DETAILED�PROCESS�

HAS�ABSTRACTED�PROCESS�

ENACTMENT�TYPE���

Figure �� Schematic De�nitions of SPLib Processes

� has�derivation � derivation�of describes a derivation relationship among processes� A

pair of processes related through them is said that one process derives� or is derived

from the other�

� has�instantiation � instantiation�of links a process model to its planned instances�

which are ready for execution in process�driven software development�

� has�history � history�of links a process model to its histories that have been enacted

or simulated during process�driven software development�

��� The SPLib Process Model

The SPLib process model describes a formalism for software processes� It actually reuses

the Articulator meta�model of software processes explained in �MS	��� Here we only give a

brief discussion about the Articulator meta�model in order to help understand the process

operations� In the Articulator� a software process is speci�ed as an interrelated collection of

objects which represent development activities� artifacts� tools� and developers� Each object

	

www.manaraa.com

has-required-resource-spec
has-agent-spec

has-provided-resource-spec
has-tool-spec

has-tool-spec
has-provided-resource-spec

has-agent-spec
has-required-resource-spechas-required-resource-spec

has-agent-spec

has-provided-resource-spec
has-tool-spec

has-tool-spec
has-provided-resource-spec

has-agent-spec
has-required-resource-spec

has-component

has-component

has-successor
has-successor

has-component

Action_n

Action_2

Action_1

Task_1

Figure �� A Sample Software Process Fragment

describes a kind of information that is involved in software development� Further� these

objects are linked through many kinds of relations� Altogether� software process models

serve as a repository of information on the status of development processes and activities

that get manipulated throughout a software development project �MS	���

A software process model includes an activity hierarchy that describes a decomposition

of development activities and resource requirements including software artifacts� tools� de�

veloper roles� and other critical resources� Figure � shows the partial schematic activity

hierarchy and resource speci�cation of a sample process fragment�

An activity hierarchy represents the decomposition of a software process into a hierarchy

of smaller activities called subtasks� Levels of decomposition can be arbitrary depending

on the complexity of the process� The top�level description is a task� which is recursively

decomposed into a set of interrelated subtasks and actions� Actions� at the bottom of this

hierarchy� represent single tool�function invocations and simple resource transformation�

Within a level of decomposition� a partial order for subtask execution is speci�ed by several

types of precedence relationships among the subtasks� such as sequential� parallel� iterative�

and conditional�

Four types of resource requirements specify descriptions of resources needed for a subtask

��

www.manaraa.com

and the expected products that result� First� a binding of users to the various developer

and organizational roles taken during subtask performance� Second� software artifacts that

are needed� created or enhanced during a subtask� called required and provided resources�

Third� tools that are used� Last� information about subtask scheduling and their expected

duration� These resources are represented as independent object classes and have relations

that link them to process models� For example� a product model of a software system could

be de�ned to have a module decomposition structure� whose modules are linked to their

producer and consumer subtasks �CS	��

In sum� the object classes used in software processes include�

� A task and an action is a representation of development work� Tasks are decomposable�

actions are not�

� Agents are developers that perform role�speci�c development activities during software

development� Agents are divided into individuals� teams� or organizations�

� A resource or product is an entity consumed and produced by development tasks and

actions�

� A tool is a resource utilized during development actions that can a�ect a product

transformation�

In the Articulator� all object classes have a structural de�nition that describes their organi�

zation or con�guration�

Relations among the object classes in software processes describe their conceptual rela�

tionships and form two structures called activity hierarchy and resource requirements� These

are also de�ned as a pair of invertible relations from opposite directions�

� has�component � component�of describes a relationship of task decomposition� A pair

of subtasks related through the relations is said that one subtask is a component of

the other� Multiple levels of decomposition are allowed�

� has�predecessor � has�successor describes a precedence relationship among subtasks� A

pair of subtasks so related means one subtask precedes the other during development�

There can be linear� parallel� iterative� or conditional precedences among subtasks�

��

www.manaraa.com

� has�agent�spec � agent�spec�of links a subtask to the necessary roles of the agent who

performs it� It speci�es both classes of agents� their availability status� and the needed

quantity�

� has�required�resource�spec � required�resource�spec�of links a subtask to the input re�

sources to be consumed� It speci�es both classes of required resources� the needed

quantity� and their status�

� has�provided�resource�spec � provided�resource�spec�of links a subtask to its intended

output product speci�cations� It speci�es both classes of products� the produced quan�

tity� and their status�

� has�tool�spec � tool�spec�of links a subtask to the development tools to be used in it�

It speci�es both classes of tools� the needed quantity� and their status�

� SPLib Process Operations

Process operations perform two types of manipulation� one is to maintain the proper relations

for a process within the library model� such as has�derivation and derivation�of relations� The

other is to reason about the content of a process description within the process model� For

instance� composition takes some process models as its input� modi�es their speci�cation�

creates a new process model that meets an input requirement� then inherits certain properties

from all of its input process models�

There are several kinds of process operations in SPLib� Some simple operations provide

basic services to access SPLib and maintain proper relations among the processes� Addition�

ally� other process operations provide basic reasoning capability in order to access software

processes upon user request� Finally� advanced operations directly modify the contents of

process descriptions�

Some of the advanced operations are su�ciently complicated that each is really a research

topic of its own� In recent years� we have studied some of these operations in great detail�

Here without reiterating these details� we simply list these process operations and their

references when available� The simple process operations include upload� download� create�

process�views� create�process�measurements� get�historical�process� and process search�and�

query� The advanced process operations include process de�nition� process composition�

��

www.manaraa.com

process specialization� process abstraction� process instantiation� process simulation �MS	���

process enactment �MS	��� and process articulation �MS	��� Due to space limitations� we

discuss three of these process operations in detail next� These are process search�and�query�

process composition� and process abstraction�

��� A Process Search�and�Query Operation

Process search�and�query based on a user request is a very important operation in SPLib�

The main bene�t of this kind of knowledge�based or semantic search is that it allows users

who can not specify their requests exactly to traverse through SPLib in an �intelligent�

manner� an to help them navigate through a large collection of software processes� Since

processes in the SPLib are organized through a number of relations at the library level and

speci�ed by a group of characteristics at the process level� users are able to move around

along the relations and characteristics in order to identify and browse potentially interesting

software processes� A very good approach to do this search is by a classi�cation algorithm

described in �DBe	��� In SPLib� we extend this algorithm to incorporate the additional

process relations as de�ned earlier�

The search�and�query operation �rst allows users to specify a level of detail to search� but

it also allows them to switch levels as needed during search� Users then are asked to specify

relations to traverse in SPLib� These relations can be has�detailed�process � has�abstracted�

process� has�derivation � derivation�of� has�instantiation � instantiation�of� has�history �

history�of� or some combination of these� Finally� the operation provides a template for

users to specify their desired properties for the process� They include object about agents�

required�resources� provided�resources� and tools�

When a search starts� it �rst limits the scope according to the speci�ed process level�

Then it identi�es a possible set of candidates through the speci�ed search relations� For each

of the candidates� the operation browses its de�nitions of the activity hierarchy and resource

requirements to �nd a possible match� This may entail examining the process models�

functional description� agents� required�resources� provided�resources� and tools� When it

identi�es a match� the operation will stop and prompt the user with the match� Otherwise� it

iterates the preceding steps� provides the user with existing choices among di�erent relations

and process properties� then asks the user to provide more information in order to continue

the search�

��

www.manaraa.com

��� A Process Composition Operation

Process composition realizes high�level construction goals speci�ed by a user� and creates a

new derived process model from a set of existing composible process models in SPLib� During

this operation� the search�and�query operation is frequently invoked to �nd the appropriate

process model components for composition�

A simple form of composition is re�nement� where a simple subtask or an action is

replaced by a multi�level process model� Before replacement� the process model to be in�

serted is retrieved when it matches the resource requirements� i�e� inputs and outputs�

of the subtask or action� When we revisit the usage scenario later� we will show an ex�

ample of re�nement where formulate�design in preliminary�design is replaced by the

OO�design process� OO�design produces an upward�compatible set of provided�resources

to those of formulate�design� and it also speci�es a particular design methodology� e�g�

Booch�s object�oriented design method �Boo	���

In more complicated cases� the composition operation must identify both the candidate

process models and their precedence order� This is accomplished as follows� First� a user

speci�es construction goals for the derived process model in terms of its provided�resources�

required�resources� agents� and tools� Among these goals� provided�resources� �i�e� prod�

ucts� are most important since they determine which processes are possible candidates for

composition� After that� the composition operation helps a user to expand these goals into

complete semantic models of products� inputs� agents� and tools in terms of their decompo�

sition and state information� For instance� a semantic product model can include product

decomposition� development status� and assembly sequence relations among product com�

ponents�

The next step is to search�and�query SPLib to �nd process models that match the spec�

i�ed model of provided�resource� required�resource� agent� and tool� This is done incremen�

tally as more and more component process models are identi�ed and merged� A di�culty

in this step is determining the precedence relation among the component process models�

Possible solutions can come from either the given product model� or from additional user

input�

Finally� the complete process model will be evaluated by the user to determine whether

the composition is successful� Partial re�work is possible given the fact that user�speci�ed

goals are often ambiguous or non�deterministic�

�

www.manaraa.com

Sometimes there is more than one way that process components can be put together

without violating the goals� Therefore� the input from users and other outside knowledge is

required� For example� when we build a software development process� we know from prior

knowledge that design tasks usually precede implementation tasks� Common knowledge such

as this can be summarized as rules to guide process composition�

��� A Process Abstraction Operation

Process abstraction is another operation that creates a higher�level generalized process from

a set of lower�level processes� The abstraction operation is needed when process details are

considered redundant or proprietary� For example� in a large�scaled software design� more

than one group is involved in di�erent design tasks� Sometimes� a group would like to dis�

seminate its process model in a more abstract way without disclosing project�speci�c details

or proprietary information� Abstraction can also generalize case�based process knowledge

into a more useful form to other users�

The abstraction operation starts from a user speci�cation� It gathers information about

the level of details to be exported and the goals to unify comparable subtasks into a generic

representation of the subtasks�

The abstraction operation proceeds iteratively from one subtask to another subtask� try�

ing to unify �ve objects for each pair of subtasks in di�erent process models� i�e� activity

hierarchy� provided�resources� required�resources� agents� and tools until all subtasks are

merged into a new process� Unifying objects requires selection of the common class repre�

sentation from all the values of each object in the merged subtasks� We unify a pair of values

of the same object� such as agent� by reasoning about whether and how process� agents are

related in terms of their classi�cation and location in the object�s class hierarchy� First�

the operation determines whether there exists a match of the classi�cation between the two

values to be uni�ed� Then it categorizes the two object values in the subtasks into their

corresponding object classes such as individuals� teams� or organizations for agents� If there

is an intersection among all the values� the intersection class is determined to be a common

class for that object and will be further matched to subclasses of this class� The kind of

matching continues along the subclasses until no match can be identi�ed� If the uni�ed

object set is empty� uni�cation fails� otherwise the �nal matched object class is the value to

be export to the generic process model in the position of the original object such as agents�

��

www.manaraa.com

Figure
� The Activity Hierarchy of MIL�STD�����A Process Model

� The Usage Scenario Revisited

Given the SPLib architecture and its operations� let us revisit the previous usage scenario

to see how SPLib is able to accomplish the intended tasks�

First� all necessary processes have been represented and stored in SPLib� At each level�

we assume there is only one process to be composed� With the support of SPLib operations�

process construction can be accomplish through following steps�

� Step �� Search for necessary process models based on the contract�awarding agency�s

requirements at the national level� For instance� a formal process model based on

MIL�STD�����A can be retrived and downloaded to the organizational level� as shown

in its activity hierarchy displayed in Figure
�

� Step �� Search for necessary process models based on the contractor�s own policies

at the organizational level� For instance� a process model based on Booch�s object�

oriented design method �Boo	�� can be retrieved as a method for software design �Fig�

ure ���

� Step �� Compose these two process models into a tailored development plan for the

project� Figure � shows one part of composition� in which the design stage in MIL�

STD�����A process model is expanded to incorporate Booch�s object�oriented design�

��

www.manaraa.com

Figure �� The Activity Hierarchy of Booch�s OO�Design Process Model

Figure �� The Activity Hierarchy of the Tailored Development Plan

��

www.manaraa.com

6 -- definition

6

I1

I2

I1,I2-- History Instances

E -- Final Software Development Plan

C -- Tailored Software Development Plan

4

B
1 -- specialization

The Organizational Level

B -- Booch’s OO Design Process

F -- Planned Instance

F

E

D -- Document Review Process

D C’

C

A’

A -- MIL-STD-2167A

A

2

1

2

1

history instance

planned instance

The Project Level

LEGENT:

The National Level
process model

3

5

2 -- composition

3 -- instantiation

4 -- enactment

5 -- simulation

Figure �� Operations in the Scenario

� Step
� Create needed processes for the unique features at the project level� For

instance� a process model describing the project�speci�c document review process can

be speci�ed�

� Step �� Compose the above process models into a �nal software development plan for

the project�

� Later Steps include� Instantiate the �nal process model to a planned instance �i�e��

bind speci�c resource values to the resource classes included in the plan�� Simulate

the planned instance in order to analyze and adjust resource allocations� Enact the

planned instance within a process�driven software engineering environment �MS	���

Figure � lists the processes and operations for this scenario� Figure shows a partial

view of the �nal customized process model after all the process operations�

�

www.manaraa.com

�� Process models at the national level

�� MIL�STD�	
��A

INSTANCE� PROCESS�MODEL

HAS�DETAILED�PROCESS� 	
���A

LEVEL� NATIONAL��

�� Process models at the organizational level

�� OODP�B �� 	
���A

INSTANCE� PROCESS�MODEL INSTANCE� PROCESS�MODEL

HAS�DERIVATION� DVP�PLAN HAS�ABSTRACTED�PROCESS� MIL�STD�	
��A

LEVEL� ORGANIZATIONAL�� HAS�DERIVATION� DVP�PLAN

LEVEL� ORGANIZATIONAL��

�� DVP�PLAN

INSTANCE� PROCESS�MODEL

DERIVATION�OF� OODP�B 	
���A

HAS�DETAILED�PROCESS� DVP�PLAN�C

LEVEL� ORGANIZATIONAL��

�� Process models at the project level

�� DVP�PLAN�C �� DOC�REVIEW�PROCESS

INSTANCE� PROCESS�MODEL INSTANCE� PROCESS�MODEL

HAS�ABSTRACTED�PROCESS� DVP�PLAN HAS�DERIVATION� DVP�PLAN�E

HAS�DERIVATION� DVP�PLAN�E LEVEL� PROJECT��

LEVEL� PROJECT��

�� DVP�PLAN�E

INSTANCE� PROCESS�MODEL

HAS�ABSTRACTED�PROCESS� DVP�PLAN�C

HAS�INSTANTIATION� DVP�INSTANCE�F

LEVEL� PROJECT��

�� A planned instance

�� DVP�INSTANCE�F

INSTANCE� PLANNED�INSTANCE

INSTANTIATION�OF� DVP�PLAN�C

HAS�HISTORY� DVP�SIMU�
 DVP�ENACT�
��

�� two history instances

�� DVP�ENACT�
 �� DVP�SIMU�

INSTANCE� HISTORY�INSTANCE INSTANCE� HISTORY�INSTANCE

HISTORY�OF� DVP�INSTANCE�F HISTORY�OF� DVP�INSTANCE�F

ENACTMENT�TYPE� ENACTED�� ENACTMENT�TYPE� SIMULATED��

Figure � Final Object Schemata for the Scenario in SPLib

�	

www.manaraa.com

	 Conclusion

In this paper� we presented the design and initial implementation of a knowledge�based

process library �SPLib� that supports process�driven software development and process reuse�

SPLib stores and organizes a collection of well�de�ned software processes in form of a multi�

level knowledge base� It also provides a set of process operations that make meaningful

access and reuse possible and more convenient�

By utilizing such a knowledge�based process library� software process descriptions can

be readily managed� reasoned about� accessed� and reused� Through the operations� users

can readily query and retrieve a collection of software processes that can be shared across a

diverse user community� Users are also able to perform operations to compose� abstract and

manipulate the process descriptions�

Development is underway to host the SPLib on top of a distributed hypertext reposi�

tory called DHT �NS	�� to accommodate heterogeneous storage servers and remote access�

SPLib is also being expanded to support di�erent forms of process descriptions� such as

textual �FBe	�� and process programming �Ost��� We therefore believe that the future use

and reliance upon process�driven software development environments �MS	�� will require and

bene�t from a knowledge�based process library such as we have presented here�

References

�AL	� B�P� Allen and S�D� Lee� A Knowledge�based Environment for the Development of

Software Parts Composition Systems� In Proc� of the ��th International Conference

on Software Engineering� pages ��
����� Pittsburgh� PA� May �		�

�Boe�� B� Boehm� A Spiral Model of Software Development and Enhancement� ACM

SIGSOFT Software Engineering Notes� ���
�����
�� Aug �	��

�Boo	�� G� Booch� Object Oriented Design with Applications� The Benjamin�Cummings

Publishing Company� Inc�� �		��

�Car�� Carnegie Group Inc� Knowledge Craft User�s Guide �Vol��� Vol�	� and Vol�
�� �	��

�CS	� S�C� Choi and W� Scacchi� Assurring the Correctness of Con�gured Software De�

scriptions� ACM Software Engineering Notes� ������������ �		�

��

www.manaraa.com

�DBe	�� P� Devanbu� R�J� Brachman� and etc� LaSSIE� A Knowledge�based Software Infor�

mation System� In Proc� of the �	th International Conference on Software Engi�

neering� pages �
	����� Nice� France� March �		��

�FBe	�� D� Frailey� R� Bate� and etc� Modeling Information in a Software Process� In Proc�

of the �st International Conference on the Software Process� pages ������ Redondo

Beach� CA� Oct �		��

�HK	� W�S� Humphrey and M�I� Kellner� Software Process Modeling� Principles of En�

tity Process Models� In Proc� of the ��th International Conference on Software

Engineering� pages �����
�� Pittsburgh� PA� May �		�

�HL� K�E� Hu� and V�R� Lesser� A Plan�Based Intelligent Assistant That Supports the

Process of Programming� ACM SIGSOFT Software Engineering Notes� ���	������

Nov �	�

�Kai� G�E� Kaiser� Rule�Based Modeling of the Software Development Process� In Proc�

of the �th International Software Process Workshop� pages
��� New York� NY�

�	�

�MS	�� P� Mi and W� Scacchi� A Knowledge�based Environment for Modeling and Simu�

lating Software Engineering Processes� IEEE Trans� on Knowledge and Data En�

gineering� ���������	
� Sept �		��

�MS	�� P� Mi and W� Scacchi� Modeling Articulation Work in Software Engineering Pro�

cesses� Proc� of the �st International Conference on the Software Process� pages

������ Oct �		��

�MS	�� P� Mi and W� Scacchi� Process Integration in CASE Environments� IEEE Software�

	����
����� March �		��

�NS	�� J� Noll andW� Scacchi� Integrating Diverse Information Repositories� A Distributed

Hypertext Approach� Computer� �
�������
�� Dec� �		��

�Ost�� L� Osterweil� Software Processes are Software Too� In Proc� of the th International

Conference on Software Engineering� pages ����� Monterey� CA� Apr �	��

��

www.manaraa.com

�RD	�� B� Ramesh and V� Dhar� Representation and Maintenance of Process Knowledge

for Large Scale Systems Development� In Proc� of �th Knowledge�based Software

Engineering Conference� pages �������� Sept �		��

�WS� M� Wood and I� Sommerville� A Knowledge�based Software Components Catalogue�

In P� Brereton� editor� Software Engineering Environments� pages �������� Ellis

Horwood Limited� �	�

��

